
 

EDT-Scipio 

 

Chicago Engineering Design Team (EDT) 

The engineering design documented in this report and implemented into this vehicle by the current student 

team is significant and equivalent to the credits that would be awarded in a senior design course. 

Signed, 

 

                                    , Dr. Miloš Žefran, Faculty Advisor 

  



1 | P a g e  
 

1. The IGVC Team 

The Chicago Engineering Design Team consists of over 40 members, with the most experienced members 

being part of EDT’s IGVC team. Figure 1 shows how the team was organized and how responsibilities were 

distributed. The team was divided into 3 departments: mechanical, electrical, and software. A captain was 

assigned to lead each department while the president and vice president were in charge of managing the three 

departments.  Since August 2012, it is estimated that the team members invested more than 2000 man-hours 

in order to design and fabricate entirely new mechanical and electrical systems while greatly improving and 

testing the software system. 

 

Figure 1: IGVC Team Organization 

2. Design Process 

Due to poor performance at the 2012 IGVC, it was made clear that the team would need to invest in a new 

design in order to effectively compete in 2013. The old design required frequent maintenance and the 

electronics could easily be wired incorrectly. Therefore, the team discussed every portion of IGVC in detail 

to develop a first class design. Many of the steps of the design process were borrowed from the process 

taught in the UIC Mechanical Engineering course called Engineering Design and Graphics. A representation 

of this process can be seen in Figure 2. 

The design process began by first understanding the design problem, and then formulating design objectives. 

After the problem was well defined and the objectives were formulated, the constraints and requirements 

limiting the design were recognized. The constraints included competition rules such as vehicle size, vehicle 

speed, and safety regulations and also internal constraints such as cost, resources, and manufacturing 
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capabilities. In order to measure how well an objective was met, metrics were developed in order to score 

different aspects of the design. Metrics pertaining to the higher level objectives were weighed heavier than 

those pertaining to lower level objectives. In our case, the metrics carrying the most weight were cost and 

manufacturing capabilities. The metrics were later used in the conceptual design process to compare various 

design concepts against each other. 

The conceptual design process began by determining all necessary functions the 

vehicle needed to perform. Next, all possible means to fulfill the functions were 

determined and inserted into a morphological chart in order to generate design 

concepts. A sample of the morphological chart can be seen in Figure 3. Concepts 

were generated from the morphological chart by making various combinations of 

the means. Many concepts were eliminated due to failure to satisfy the design 

constraints. The overall concepts list was then reduced to four top concepts which 

were further analyzed and compared against each other. Generic drawings and 

sketches were made for each concept and the overall cost and manufacturability 

were estimated. A comparison chart was developed and the metrics were used to 

score the predicted performance of each concept. The method of assigning a score 

to objectives involving performance was done by researching the concept and 

making an educated estimation. After compiling the overall scores of each concept, 

the concept that received the highest score was chosen as the final concept. Until 

the final concept was selected, all three departments worked together; however, 

once a final concept was selected, the departments branched out to work on the 

detailed design section for their respective departments.  

The detailed design section consisted of, but was not limited to, developing 

engineering drawings, schematics, CAD models, and a bill of materials. Once the 

CAD models were completed, dynamic simulations and testing could be performed 

(where applicable). Finally, parts were ordered and manufacturing could begin. 

During the manufacturing process, each 

department performed its own 

independent tests of components and 

systems. Once the mechanical and 

electrical systems were manufactured, 

integrated testing of all 3 systems was 

Figure 2: Design Process 

Figure 3: Morphological Chart 
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performed. When problems were encountered, improvements were suggested and implemented where 

required. 

3. Mechanical Design 

Scipio was designed to be a reliable and stable platform so that the mechanical structure could be re-used in 

future years. The entire drivetrain is considered a mechanical innovation, as it is different from any prior 

EDT drivetrain. Scipio is split into two main sub-assemblies, the top chassis assembly and bottom chassis 

assembly, which are described in detail below.  

3.1. Bottom Chassis Assembly 

The bottom chassis was constructed of a steel tube frame, which houses the drivetrain and its components. 

The drivetrain is powered by two 3HP brushed DC motors, operating at 24 volts, and is a skid-steer system.  

The skid-steer system allows Scipio to have a zero-turn radius, which is optimal for switchbacks and dead 

ends. The drivetrain is comprised of two in-house manufactured gearboxes that drive a power transmission 

belt system. The gearbox and belt system achieves a speed reduction of 12.8 and 2.39 respectively, providing 

a total speed reduction of 30.63:1. Both of these systems are designed and manufactured within tolerances to 

achieve efficiencies greater than 93%. 

The motivation behind this drivetrain was to increase the power and efficiency while reducing the amount of 

maintenance required. EDT robots in the past, which were chain driven, suffered performance issues and 

required great amounts of maintenance in order to compensate for backlash. In particular, chain based 

drivetrains struggled to turn the robots easily and steadily. By significantly increasing the drivetrain power 

from a 17.5 to 30.63 speed reduction and establishing the proper ratio between wheel centers, the robot was 

easily able to overcome the effects of the turning scrub. Maintenance was greatly reduced due to the strength 

of the belts and overall structure of the drivetrain. 

Figure 4: Bottom Chassis Assembly Figure 5: Drivetrain Skeleton 
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3.2. Top Chassis Assembly 

The top chassis was designed to be modular and 

accessible while maintaining a clean and 

professional aesthetic. The top chassis stores the 

logic circuits, payload, and the sensors including the 

GPS, Laser Range Finder, webcam, and compass. 

The top chassis is divided into three compartments: 

the electrical box, laptop area, and housing area. 

Each area can be accessed by either a drawer or a 

door. The laptop platform slides outward on a 

drawer, while the electrical box and housing area 

have hinged doors for access. Aluminum T-slotted 

framing was used as the base structure for the top chassis, which allows for easy assembly and future 

modifications. Aluminum panels with rubber edge-grip seals were fastened to the T-slotted frame in order to 

provide protection and weather-proofing. Mating to the bottom chassis was achieved by utilizing four quick-

release pins, allowing easy separation from the bottom chassis for troubleshooting or maintenance. 

4. Electrical Design 

Scipio represents a leap forward 

for EDT’s approach to electrical 

integration. The flow for the 

electrical system starts at the 

computer. The computer is fed 

data from a compass, GPS, laser 

range finder, and two incremental 

shaft encoders. With this data, the 

computer determines the 

navigation path and sends data to 

the EDCS. The Signal 

Multiplexer is used to switch between autonomous and remote control, as detailed below. If an invalid signal 

is received by the Signal Multiplexer, the robot will not be allowed to move. If a valid signal is received, the 

motor controllers are sent a power level and movement begins. A set of bright LEDs will flash when in 

autonomous mode, but will change to solid when in remote control mode. If at any point there is an 

emergency, pressing either the onboard E-Stop switch or the wireless E-Stop switch will disable the robot. 

For the first time, EDT has designed circuits as "cards" (rather than boards), which can be plugged into a 

Figure 6: Top Chassis Assembly (Open) 

Figure 7: Electrical Flowchart 
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socket. This replaced the old method of wiring up boards individually, leading to the possibility of making 

incorrect connections. In addition, having all of the circuitry on a single logical unit greatly reduced the 

amount of space and wiring required for the electronics. Each of the embedded systems will enter a sleep 

mode when idle in order to conserve power. 

4.1. Power System 

Scipio is composed of a 24 volt electrical system, created by two 12 volt, 35 amp-hour, sealed lead acid 

batteries in series. This configuration yields 90 minutes of runtime. As in previous years, two Victor 885 

motor controllers were used to throttle the power delivered to the motors. Switching regulators were used to 

power the sensors and the logic circuits, and were chosen for power efficiency.  Moving from a desktop 

computer to a laptop allowed the DC-AC inverter to be removed, as well as several batteries. 

4.2. Emergency Stop (E-Stop) 

The Emergency Stop is designed to disable the vehicle whenever an emergency situation occurs. The E-Stop 

may be activated wirelessly by remote control or manually by pressing the onboard switch. The E-stop is 

composed of two modules: a hand held transmitter unit that wirelessly transmits a signal to the vehicle and a 

receiver unit which is on the vehicle. The transmitter unit has a highly visible red pushbutton switch which 

changes from “GO” command to “STOP” command when depressed. A “GO” signal must be received from 

both the onboard switch and the wireless transmitter before the vehicle will be allowed to move. If no signal 

is received from the wireless transmitter, the vehicle will remain stopped for safety reasons. The radio 

module has a range of 5 miles and uses spread spectrum technology to ensure data encryption and prevent 

interference or jamming from external sources, thus improving system reliability.  

4.3. Embedded Drivetrain Control System (EDCS) 

The EDCS is designed to interface the software controls system to the drive motors. The system consists of a 

module for each side of the vehicle, requiring two EDCS’s per vehicle. Each module is responsible for 

measuring the wheel speed and controlling the power level of the motor for its respective side. A 

microcontroller is the brain of each module and communicates with the software control system via RS-232 

serial communication. The communications protocol between the EDCS and the computer is designed to 

inherently detect communication errors, leading to improved system reliability and safer operation. From a 

navigation standpoint, this is one of the most important systems in the robot. By checking for wheel slippage, 

the computer can compensate for erroneous wheel encoder readings, which aids in performing accurate 

localization functions.  



6 | P a g e  
 

4.4. Signal Multiplexer (SigMux) 

The Signal Multiplexer allows the user to choose the manner in which Scipio is controlled. The system has 

four modes of operation that are easily controlled by the user through pushbutton switches located on the left 

side of the robot. The first mode is called safety, which causes the vehicle to remain stationary. This is the 

default mode, ensuring safety by not allowing the vehicle to move until a user deliberately specifies a desired 

mode. The second mode allows the vehicle to be exclusively controlled autonomously. The third mode 

allows the vehicle to be exclusively controlled by remote control. The final mode allows the vehicle to 

switch between autonomous and radio control. This is determined by a toggle switch on the remote control. 

If the robot is in remote control mode, the system ensures that a valid signal from the RC controller is 

present, but will put the vehicle in safety mode if there is an erroneous or absent signal.  

4.5. Flashing Light Circuit 

The flashing light circuit is designed to alert nearby people of the robot and indicate the mode of operation. 

There are four high output LEDs, one facing each side of the robot, mounted under the webcam. The flashing 

light circuit receives a signal from the SigMux and places itself in one of two modes. When autonomous 

mode is engaged by the SigMux, the LEDs blink with 1 Hz frequency, giving people adequate warning to 

stay clear of the robot. When not in autonomous mode, the LEDs are on but do not flash. 

4.6. Sensors 

Scipio has several sensors that provide data feedback to the computer software. Two incremental shaft wheel 

encoders are coupled directly to the front wheels to measure the exact rotational position and velocity of each 

side of the vehicle. Each encoder produces two pulse trains with frequencies linearly dependent on wheel 

speed. The encoder sends the two pulse trains to the EDCS, which then determine the wheel speed and 

direction of rotation. A weatherproof GPS receiver is used to help with goal planning and allows the JAUS 

protocol to be implemented. A new addition this year is a laser range finder mounted on the front of the 

robot. The laser range finder is used for object detection and replaces a previously less accurate system of 

sonars and a stereoscopic disparity camera. Moving from a disparity camera to a normal webcam reduced 

computational demands and therefore reduced the required amount of on board batteries. 

4.7. Computer 

This year, EDT switched the computing platform to a laptop, which allowed for a dramatic decrease in the 

number of batteries required on board and eliminated the need for a DC-AC inverter. A durable laptop, 

meant to withstand vibration and temperature shock, was selected. Replacing the mechanical drive with a 

solid state drive provided more resistance to vibration. The computer contains an NVidia Quadro K3000M 

graphics card, which allows CUDA to be utilized. CUDA is a set of API’s that allows code, such as line 
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detection, to be quickly executed on the GPU. A secondary battery was also purchased, giving 185 watt 

hours of power – good for an average of 4 hours of runtime. 

4.8. Electrical Innovations 

There are three main electrical innovations from previous years. In Scipio, all of the major electrical 

components are placed together into a single, easily accessible compartment, which is beneficial from both 

an installation and diagnostic standpoint. For example, moving the motor controllers into the electrical 

compartment has greatly simplified controller calibration for the end user, and has greatly simplified the 

replacement process.  

Another innovation was to convert all of the circuits into a motherboard-daughterboard configuration. The 

motherboard has seats for all five daughter cards, which can be replaced in seconds in the event of a failure. 

All communication between systems is accomplished through the backplane, which is completely passive. 

This system has greatly reduced the space required for wires and electrical components. The backplane also 

has programming ports so firmware can be updated 

Lastly, the plan for object detection was changed from analyzing a stereoscopic image to interpreting data 

from a laser range finder. This allowed for a decrease in computational requirements, and therefore battery 

requirements. The laser range finder is also inherently more precise than image analysis because data is sent 

as (x,y) coordinates as opposed to being deriving (x,y) coordinates from a 3-dimensional image. 

5. Software Design 

Scipio runs an in house intelligent agent named Deimos. Deimos is designed to be a resilient system which 

plans its action based on prior experiences while maintaining a robust response to perceived changes to the 

surrounding environment. 

To accomplish the objectives for the 2013 IGVC, the following major systems have been created: 

 Mapping – Deimos will record and recall obstacles previously viewed, including  physical 

obstacles as well as lines and flags. 

 Navigation – Using the recorded map data, the shortest path to the desired destination will be 

found and followed. 

 Wheel Controller – The speed of the robot should be maintained at the highest rate allowed by 

the input processing speed, while following both physical constraints and the IGVC rules. 

 Sensors – Sensory data is interpreted and passed to the map in an input independent manor, 

decoupling the input device from logical representation.  
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 JAUS – Remote monitoring and interaction between robot and external system, using the JAUS 

protocol. 

5.1. Software Architecture 

Deimos is a multi-threaded system. There are two primary states the system can be in: stationary/routing in 

which a new path is derived, and execution, in which a set path is followed. Execution runs until either the 

path has been followed to its end (GPS waypoint), or an unexpected obstacle is in the path. In either case, the 

state returns to stationary/routing (after stopping in the case of an obstacle). The following diagram shows 

the high level module interaction: 

 

Figure 8: Deimos module and thread interaction diagram. Shaded boxes are executed on their own threads. Red lines trace a halt 
event’s callback chain. 

5.2. Languages and Libraries 

Deimos is written primarily in Java, with some external C++ libraries in use. Connection between the Java 

and C++ code is done using JNA. A few open source libraries are used, including JAUS++, jSSC (serial 

communication), jUnit (framework testing), and OpenCV (CUDA processing). 
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5.3. Movement 

A wheel control system was introduced into this year’s design with the goal of enabling the movement of the 

robot to match specified velocities, and to accelerate and decelerate smoothly with minimal drift due to 

differences in the left and right motors. In order to achieve this goal, several possible methods of 

implementing a control system were examined. Initially, implementing a PID controller was considered; 

however, research led to the consideration of a fuzzy logic wheel controller. While building such a system, it 

was discovered that the additional overhead in translation to a fuzzy set mitigated the benefit of pre-

calculating values. As such, a direct adjustment has to be performed in the final system. 

The direct adjustment is in two parts, and uses the following formulas. Let     be the maximum velocity. 

  , which is a configurable value, is used to ensure sensory data has sufficient time to be collected and 

processed, so that the robot can respond to obstacles before intersecting them. Let    and    be the left and 

right velocities, respectively, and   be an acceleration factor tuned to the specific hardware. Let     and     

be the difference between desired velocity and observed velocity for left and right side, respectively. Let 

         be the current motor set point and       be the next motor set point. Let   be a syncing factor, 

tuned to the specific hardware. Then: 

                 
   

       
                              

   
       

 

Followed by the syncing: 

             (   )||  |  |  ||                            (   )||  |  |  ||    

5.4. Constraints 

The control system runs at a software level as part of the agent, and not on a microcontroller. The decision to 

implement the control system at this level was multipart. First, the EDCS, which interfaces with the encoder 

and motor for the wheel, was implemented as an independent per wheel device. This existing implementation 

did not provide an interconnection between the two wheel controllers, and so it could not easily provide 

synchronization in wheel speeds to reduce drift while attempting straight line movement. Therefore, 

synchronization had to be done at a higher level.   
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5.5. Sensory 

5.5.1. Laser Range Finder 

A laser range finder, capable of 1mm precision, 1° 

angular resolution, and accurate up to 4 meters outdoors, 

was used for object detection on this year’s robot. The 

data from the scans is read and sent to the Mapping 

module to record the presence of objects within close 

proximity of the robot for future navigation. 

5.5.2. GPS/Compass 

The data loaded from the GPS is accurate to within 0.6m. 

Upon polling current location by GPS, the conversion 

equation between GPS waypoints and map coordinates is 

recalculated. This means that if any slippage occurs when 

tracking Scipio’s location in the map, the GPS waypoint location is self-corrected. 

5.6. Line Detection 

Line detection is performed using images captured from a HD 

webcam. Polling of the image is performed in C++, and the 

resulting image is processed using OpenCV’s CUDA library, using 

the Hough Lines algorithm. The image coordinates are then mapped 

into a 3-dimensional real coordinate space. This can be done 

geometrically given the height and angle of the camera. Currently, it is 

assumed that the robot is level and that the ground in front of it is a level 

plane. 

5.7. Dead Reckoning 

Dead reckoning is used to maintain a knowledge of the current location of the robot in map-space. While this 

type of system typically suffers from slight drift over time, this is an expected characteristic and is countered 

by the self-correcting nature of the mapping design. Due to the inherent slippage of wheels while rotating in 

place with a differential drive, the compass is used to provide heading information. Distance traveled is 

calculated as follows. 

Let    be the radius of the wheels,   the angle of heading from the compass,    and    be the number of 

pulses counted by the encoders on the left and right wheels, respectively, and   be the number of pulses per 

Figure 9: Laser Range Finder - Viewing Range 

Figure 10: Line detection example 
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revolution. The equations to calculate    and   , the changes to the robots location in map-space since the 

last update are: 

        ( ) (     )
 

 
                     ( ) (     )

 

 
 

The updates are incrementally passed to the Mapping module, which maintains the current location in map-

space of Scipio. 

5.8. Mapping 

The mapping system in Deimos uses the blackboard model. In the blackboard model, various systems post 

and receive information to a central repository or "blackboard." In Deimos, the Mapping module serves as 

this blackboard. Various threads add data to the map as it is generated and current data is polled from the 

map as needed. The map holds the following information: 

 Object and line locations in a coordinate space defined with respect to the location of the robot 

when Deimos is initialized. 

 Locations in the map not yet viewed are marked as such to allow navigation processing 

optimizations 

 Current location of the robot in map-space 

 List of waypoints in GPS coordinates. These are mapped to map-space coordinates when 

requested. 

5.9. Coordinate Spaces 

The map-space functions at two logical levels. On the surface, map coordinates are (x,y) pairs where x is the 

number of meters north of the origin (location of initialization), and y is the number of meters east of the 

origin. This allows all coordinate passing to be in a standardized format decoupled from the data structure 

used to store the map. Internally a map exists as a two dimensional array, of which each value stores the 

current best known state information for the block of space it represents. The array data can represent lines, 

probability of an objects presence (low, medium, or high), flags, empty space, unknown, etc.  

Translation between coordinate spaces functions as follows. Let   be the number of indices per meter (the 

resolution of the map). Let      and      be the maximum distances from the origin point that the map will 

cover. Let    and    be coordinates in map-space (meters). Let    and    be coordinates in internal structure 

coordinates. 

  (  )   (       )               (  )   (       ) 

  (  )  
  
 
                    (  )  
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5.10. Robot Point Location 

To increase the efficiency of the navigation search algorithm, the map treats the robot as a point particle. To 

achieve this without causing collisions with obstacles, each object in the map casts a “shadow” around its 

true location. This shadow effect causes objects on the map to effectively swell in size to compensate for the 

size of the robot. 

5.11. Self-Correction 

A key feature of the map is that it is self-correcting. To achieve this, when an area is viewed multiple times, 

such as by the laser range finder, all values which were previously set by the laser range finder within the 

viewing area are first decreased in confidence (for example from high to medium). Next, the new values are 

placed, with shadow, at high confidence. This causes values to diminish if the area is viewed again and the 

object is not in the same location. This can result from obstacles (such as people) moving or through the 

expected drift of accuracy of current location in map-space. When revisiting an area, if drift has occurred, the 

objects will degrade and be replaced by their corrected location points.  

If objects are not located close to each other, a distortion effect may be created due to drift; however, a path 

through the area will be maintained (if it exists in real space). The exact distances and angles of the path may 

be likewise distorted, so as the path is followed it will be corrected with respect to the drift, maintaining the 

ability to route through distorted areas. 

5.12. Navigation 

Navigation checks Mapping for current GPS waypoints. If GPS waypoints are found, it attempts to route to 

one. To achieve this, the internal map grid is viewed and a modified breadth first search is performed. If 

points are encountered which are unknown (not previously visited), the search does not extend into that 

space. Instead, a straight line is substituted to the destination (or the closest known point on the line). Once a 

path to the target has been identified, it may contain “jagged” lines if a diagonal path should be followed. 

To correct for these “jagged” paths and reduce the overall time to navigate, the path is smoothed. Smoothing 

is accomplished by moving each vertex on the path closer to its neighbors along the path, and at each step 

checking if the resulting new path segment encounters an obstacle or line. This is repeated along the length 

of the path until a series of straight line segments are formed (along any angle). This path is then passed to 

the movement controller, a module which attempts to follow a given path until the end is reached or an 

obstacle is unexpectedly found in the path. 

By following this method, the navigation is generalized, which removes the need for specialized lane 

following. Spaces containing lines or obstacles are both treated as not crossable, i.e. occupied. 
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5.13. JAUS 

Initially, JAUS implementation used OpenJAUS. After a significant investment in time and submitting many 

bug fixes for this framework, a switch was made to Jaus++. Jaus++ provides a more reliable framework for 

the code to run on. Both systems are in C++, and connection to the core Java Deimos code is made using 

JNA. 

5.14. Software Innovations 

Deimos represents a significant advancement in intelligent agent development by Chicago EDT compared to 

prior years. This includes the following: 

 A control system has been added to allow smooth movement, with wheel synchronization to 

avoid rotational drift.  

 A map is now maintained which differentiates between types of objects, allowing for different 

update policies by type of obstruction (ex. physical object vs. painted line). 

 Navigational routing intelligently uses map data to avoid unnecessary routing computation by 

recognizing areas which have not yet been seen. 

 JAUS is now implemented for the first time at Chicago EDT. 

 The use of a laser range finder allows for significantly more accurate object detection, and 

reduces the computational cost associated with cleaning up noise in a disparity image, as well as 

image processing in general. 

6. System Safety 

Ensuring that the vehicle was safe was of high importance. The key features that ensure that the vehicle is 

safe for all users and observers are listed below.  

 All exposed edges and corners have been smoothed to prevent injury 

 All drivetrain components are properly enclosed and protected 

 A flashing light alerts bystanders 

 The SigMux checks for valid signals to ensure no random or spontaneous movement when in RC 

mode 

 If no wireless E-Stop signal is detected in autonomous mode, the vehicle is automatically deactivated 

 Speed is mechanically limited to 5.98 mph at 24 Volts 

7. Performance Analysis 

The performance analysis section includes the predicted performance of the vehicle versus the actual 

performance of the vehicle when tested. 
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7.1. Vehicle speed 

With 14 inch diameter wheels, a speed reduction of 30.63:1, and motors with an output of 4400 rpm at 24 

volts, the maximum theoretical speed of Scipio is 5.98 mph (assuming no losses due to loading). Testing 

showed an average maximum speed of 5.59 mph, which is within 6.6% of the calculated speed. 

7.2. Ramp climbing ability 

Due to Scipio’s low center of mass and powerful drivetrain, it was expected that it could climb an incline of 

40 degrees with ease. Testing showed that Scipio was able to easily climb a 45 degree incline, which is 

significantly greater than any incline on the IGVC course.  

7.3. Reaction times 

Scipio's reaction time is limited by a combination of collecting sensory data and then processing the data. 

The EDCS's are able to accept a new power level every 50 ms. Line detection, on average, takes less than 

10ms, and the laser range finder data is read every 20 ms. The map can be updated with laser range finder 

data almost instantly. Therefore, the worst case scenario is when the EDCS’s respond to data from the laser 

range finder, giving a 70ms reaction time. 

7.4. Battery life 

Scipio can operate for a maximum of 90 minutes before the drive motor batteries must be replaced. The 

laptop battery lasts an average of 4 hours. The goal was to achieve 2 hours of runtime.  

7.5. Distance at which obstacles are detected 

According to the data sheet for the SICK TIM-310 laser range finder, objects can be detected at distances up 

to 4 meters indoors and 3+ meters outdoors. Testing revealed that the laser range finder was able to detect 

objects as distant as 3.96 meters in direct sunlight, exceeding the expectations. 

7.6. Dealing with complex obstacles 

Due to the generalized mapping and navigation system employed by Deimos, complex obstacles, such as 

switch backs, are handled intrinsically by the routing algorithm. This is an improvement over systems such 

as line following, which require additional logic to handle these special cases. Being able to turn on point 

allows Scipio to easily follow the commands to maneuver around complex obstacles. 

7.7. Positional accuracy 

The accuracy of the Hemisphere GPS is +/- 0.6 meters. The software team has programmed the robot to 

navigate to within 1 meter of a waypoint. With these two factors, the expected accuracy of arrival at 

navigation waypoints is 0 to 1.6 meters. 
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8. Bill of Materials 

The Bill of Materials section includes a breakdown of the all the major components and parts used to 

manufacture Scipio along with cost and vendor information. 

 

Figure 11: Bill of Materials 


